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Abstract— Connected and automated vehicles (CAVs) have
the potential to improve the safety of automated driving by
utilizing increased awareness about their surroundings in real
time vehicle control. In this paper we propose a framework
for a shared perception system suitable for CAVs and explain
the algorithms used in the system. Finally, we experimentally
demonstrate the benefit of our shared perception system for
automated vehicles in uncertain environments.

I. INTRODUCTION

Perception systems are essential in the development and
operation of an autonomous vehicle (AV) and Advanced
Driver Assistance System (ADAS). AV/ADAS perception
systems generally utilize a set of on-board sensors such as
camera, radar, and lidar. In recent years, there have been
growing efforts from both the research community and the
industrial sector to advance on-board sensor technologies and
perception algorithms [1]. However, perception systems that
rely solely on on-board sensors are inherently limited by
the detection range and field of view of their components.
These limitations increase uncertainty in the motion planning
and control algorithms, which in turn sacrifice performance
(passenger comfort, road throughput, energy efficiency) in
order to guarantee safety. Communication and connectivity in
CAVs can mitigate these shortcomings by enabling real-time
control and planning with increased awareness, routing with
micro-scale traffic information, coordinated platooning using
traffic signals information, and eco-mobility on demand with
guaranteed parking enabling rapid cooperative movements
[2].

Connected Vehicle (CV) technology is well-established in
the automotive community. Dedicated Short Range Commu-
nication (DSRC) established highly secure, high-speed direct
communication between vehicles and nearby infrastructure
[3]. This enables a Vehicular Ad-hoc Network (VANET)
which provides Vehicle-to-vehicle (V2V) communication
through on-board units (OBU) and vehicle-to-infrastructure
(V2I) communication through road-side units (RSU) [4].
DSRC was developed with a primary focus on safety ap-
plications, and is based on relatively small packets that are
transmitted with low latency; bandwidth limitations would
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emerge when trying to exchange larger amounts of data.
Recently, the fifth generation mobile technology standard
(5G) has been proposed as an alternative technology for V2V
communication, which would also allow to exchange larger
quantities of data [5].

V2V communication can improve vehicle safety by en-
abling all CVs to share their location and the targets detected
by their perception systems. We refer to this concept, which
to our best knowledge was first investigated in [6], [7],
as shared perception. A shared perception system presents
each CV with an augmented version of its on board per-
ception system, in which the size of the occluded regions
is reduced and the detection range and field of view are
increased. Different approaches to shared perception through
V2V communication have been explored in the literature. In
[8], CVs share and merge their occupancy grid maps using
a so-called coordination transformation method. However,
the performance of this map merging method is limited
at scale, as the large amount of shared data increases the
communication delay uncertainty. In [9], the authors propose
an object-based approach to shared perception, where the
raw data of each detected obstacle is first processed and
filtered locally, and subsequently transmitted to the nearby
vehicles. The processed obstacle data is abstracted as an
object with states such as location, velocity, and heading
angle measurements and the corresponding covariance matri-
ces, reference frame, etc. This object-based shared perception
approach provides main two benefits. First, it can reduce the
communication burden by avoiding transmitting raw sensor
data. Second, it improves system modularity, i.e. existing on-
board sensors can be replaced or new hardware can be added
without restrictions on specific hardware, as long as its raw
perception data can be represented in a way that fully defines
an object class defined above. For these reasons, the shared
perception system proposed in this paper also implements an
object-based shared perception concept.

Other implementations of object-based shared perception
are also explored in literature. In [9]–[11], inter-vehicle
object association is presented by applying point matching al-
gorithms after taking care of temporal and spatial alignments
of CVs and their perceived and shared objects. In [12], driver
warnings were demonstrated to alert drivers of potentially
dangerous situations using objects perceived by CVs. To
the best of the authors’ knowledge, the existing literature
does not include any demonstration of vehicle motion control
based on shared perception with exception of the work in
[13] where wireless communications are used only for high
level coordination and an on-board lidar and GPS are used
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Fig. 1: The on-board perception and control architecture for
CAV

for perception and localization.
The contributions of this work are two-fold. First, we

propose an object-based shared perception system in order to
reduce occluded regions on the road and improve safety. This
is accomplished by expanding the standard DSRC message
set ([14]) with custom V2V messages, and by a set of
algorithms for object fusion and vehicle localization algo-
rithms which are described later in this paper. Second, we
experimentally demonstrate a longitudinal motion controller
for CAVs that leverages the shared perception system to
safely adjust the vehicle speed even before the undetected
vehicle suddenly appears in direct line-of-sight.

II. SHARED PERCEPTION STRUCTURE AND ALGORITHMS

In this section we introduce the proposed object-based
shared perception system. We utilize on-board camera and
radar sensors and communicate object-level information
about their detected targets through V2V OBUs. Clearly any
set of available sensors can be used in our approach.

A. CAV System Structure

Our CAV uses an on-board perception and control ar-
chitecture suggested by [2] and is shown in Fig. 1. The
CAV perception system (upper-right block) receives real-
time data from GPS, DSRC, radar, and camera devices and
reconstructs the driving situation (e.g. position and speed of
surrounding/communicating vehicles, road geometry, traffic
lights, etc). This information is then used by the Real-Time
Control and Planning system (upper-left block) to compute a
safe vehicle trajectory, and the corresponding control inputs
are requested to the vehicle actuators through the powertrain
and steering interfaces. Readers are encouraged to read
[2] for a comprehensive survey of control and planning
algorithms that fit in this architecture, particularly for the
improvement of energy efficiency and safety.

B. Shared Perception System Structure and Algorithms

Fig. 2 illustrates the shared perception structure of the
host vehicle, which refers to the vehicle being controlled
and communicating with the other vehicles, next denoted

Target Table

Target Table
(Ego ID)

Target Table
(Peer ID)

On-board Sensors
(Radar & Camera)

Inbound DSRC
Merge Table

Outbound DSRC

Persistent
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Fig. 2: The shared perception system structure of the host
vehicle

as “peer vehicles”. As illustrated in the figure, perception
data from on-board sensors and V2V data from DSRC
undergo a set of filtering and object-association steps to
construct a set of tables, namely target table, merge table,
and finally persistent table. Targets in “Persistent Table” are
interpreted as obstacles in motion control of our CAV. A
similar approach is proposed in [11].

Next we explain the steps and algorithms that constitute
our proposed shared perception system. For simplicity, we
focus on the simplest case with only two communicating
vehicles (the host and the peer), although the approach
generalizes to cases with more communicating vehicles.

First, assume a set of targets is locally perceived by
the on-board radar and camera in the host vehicle. Each
target, denoted as z, carries information about its validity
(a flag to indicate whether the target is persistently detected
and has reasonable measurements), relative position, and
relative velocity; Note that this set of information is directly
available via communication with the on-board radar and
camera modules. We denote the list of radar targets as zr
and the list of camera targets as zc. Algorithm 1 details
the steps to construct the Target Table for the host vehicle,
denoted as T host

target, using zr, zc, GPS information of the two
vehicles, and the V2V message such as the target table from
the peer (T peerID

target ). At each iteration with time intervals of
duration ts, each target from zr and zc, if it is valid, is
associated with the host ID and sorted in an ascending order
of relative longitudinal distance (∆y) from the host vehicle.
Finally, targets with host ID in T host

target are transmitted to other
communicating vehicles along with the GPS information of
the host vehicle.

Upon receiving its target table information from the peer
vehicle, denoted as T peerID

target , each target in T peerID
target is trans-

formed into the host vehicle’s reference frame using the
host vehicle’s GPS and the peer vehicle’s GPS (see [9]
for example). This step is denoted as changeCoordinate() in
Algorithm 1 and can be improved by additionally using local
radar data. Section. III explains this step in detail. Finally,
the transformed targets are appended to T peerID

target .
The next step is to construct the Merge table and the

Persistent table, denoted as Tmerge and Tpersist, respectively.
Algorithm 2 details the steps to construct them using T host

target.
At each time stamp, we obtain Tmerge by scanning all the
targets and removing all (objects that are identified as) du-
plicates in T host

target. This step of finding and removing duplicate



Algorithm 1 Target Table Update for Host Vehicle

1: Input lathost, lonhost, Vhost, θhost, latpeer, lonpeer, Vpeer,
θpeer, zR, zC, T peerID

target
2: Output T host

target
3: for each iteration, do
4: for every target z in zR and zC, do
5: if z is valid,
6: z.host = hostID
7: append z to T host

target

8: sort(T host
target) according to ∆y

9: T hostID
target = [ q in T host

target if q.host = hostID]
10: Transmit T hostID

target with lathost, lonhost, Vhost, θhost

11:

12: for every target q in T peerID
target , do

13: changeCoordinates(q, lathost, lonhost, Vhost, θhost,

14: latpeer, lonpeer, Vpeer, θpeer)
15: append q to T host

target

targets is denoted as isNeighbor() in the algorithm. In this
work we simply use a distance-based method to find the
target duplicates (i.e. whether the two targets are within a
close proximity, dc) and remove them. Existing literature is
full of alternative and more sophisticated object association
methods [10], [11], [15], [16] which can be applied to our
framework as well. Finally, we update Tpersist by propagating
the target states using a Kalman filter with a 2-D space
point-mass model assuming constant velocity and using new
measurements in the updated Tmerge. In this step, we remove
targets that are older than (i.e, no new measurements for
more than) na time steps. Note that the parameters in our
proposed algorithms such as na, kalman gains, and dc are
tuning parameters which can differ from each vehicle due to
its different sensor specifications.

III. PEER/TARGET LOCALIZATION

In the proposed shared perception system, each target seen
by a peer vehicle is transformed into the host vehicle’s
Reference Frame (RF) using the GPS information from
the two vehicles via the function changeCoordinate(). As
a result, accurate localization of the communicating peer
vehicles is critical for the quality of the proposed shared
perception system. The proposed method is based on an
Extended Kalman Filter (EKF) approach that merges the
information provided by a kinematic vehicle model and the
radar and GPS measurements of each vehicle. The output
of the EKF is the estimated distance between the vehicles’
chassis. For the sake of simplicity, two identical cars are
considered in this work.

Figure 3 shows the schematic of the proposed approach.
The EKF provides the relative distance between the ve-
hicles’ chassis and their orientations. The radar and GPS
measurements are processed respectively by the Radar Data
Module and the GPS Data Module. Note that these blocks
also depend on the current estimate.

Algorithm 2 Merge Table and Persistent Table Updates

1: Input T host
target

2: Output Tmerge, Tpersist
3: initialize Tpersist = []
4: for each iteration, do
5: initialize Tmerge =[]
6: for every target z in T host

target, do
7: if isNeighbor(z, Ego), remove z from T host

target
8: else if isNeighbor(z, Peer), remove z from T host

target
9: else append z to Tmerge

10: for every target q in T host
target, do

11: if isNeighbor(z, q), remove q from T host
target

12: for p in Tpersist, do
13: for m in Tmerge, do
14: if isNeighbor(m, p),
15: kalmanUpdate(p,m)
16: p.age = 0
17: remove m from Tmerge
18: break
19: if p.age > na, remove p from Tpersist
20: constantVelocityUpdate(p)
21: p.age+ +

22: for m in Tmerge, do
23: m.age = 0
24: append m to Tpersist

Fig. 3: Schematic of the proposed localization algorithm. Ve-
hicle i and j indicate the host and peer vehicles, respectively.

A. Experimental Setup for Sensors and Communication

The test vehicles are approximated to be a rectangle of
length l and width w. They are equipped with a front facing
Mando camera and Delphi ESR radar for perception, and a
Cohda MK5 OBU, which includes a DSRC radio for V2V
communication and a GPS unit (placed in the center of the
rectangle) for localization. The vehicles are also equipped
with an OTS RT2002 system, a high precision 6 degree
of freedom Inertial Measurement Unit (IMU), of which, in
the following analysis, only the yaw rate measurement ωz

is considered. The MK5 Unit exchanges DSRC messages
according to the SAE J2735 Message Set Dictionary [3],
with some customization in order to communicate target
information in the Target table.



B. Vehicle Model

In the Global RF, the motion of vehicle i is described by
the kinematic bicycle model:

xi(k + 1) = xi(k) + ts(Vxi(k) cos(θi(k)))

yi(k + 1) = yi(k) + ts(Vxi(k) sin(θi(k)))

θi(k + 1) = θi(k) + ts(ωzi(k))

(1)

where ts is the sampling time; the inputs of the system are
the longitudinal speed Vx in [m/s] and the yaw rate ωz

in [deg/s]; the state of the system consists of the pose of
the vehicle, where x and y are in [m], and θ which is the
heading expressed in [deg]. The Global RF is aligned with
the GPS RF, hence the heading θ of the model is consistent
with the one measured by the GPS. The model describes the
position of the center of the vehicle. Note that the presented
kinematic model is suitable for vehicles in lower speed urban
or highway environments. In case of highly dynamic sport
driving, a more detailed vehicle model should be considered.
The distance d between vehicle i and vehicle j involves two
components in the Global RF, dx = xi−xj and dy = yi−yj .
Through the kinematic model (1) it is possible to describe
their evolution:

dx(k + 1) = dx(k)

+ts(Vi(k) cos(θi(k))− Vj(k) cos(θj(k)))

dy(k + 1) = dy(k)

+ts(Vi(k) sin(θi(k))− Vj(k) sin(θj(k)))

θi(k + 1) = θi(k) + ts(ωzi(k))

θj(k + 1) = θj(k) + ts(ωzj (k))
(2)

where dx, dy , θi and θj are the state variables of the system,
Vi, Vj , ωi and ωj are the inputs of the system.

1) Radar measurement: The vehicle’s radar provides the
distance between the sensor and the detected object in polar
coordinates, where ρ is the relative distance and θR is the
angle. Figure 5a shows the relationship between the (valid)
radar measurement and the distance projections dx and dy .
When the radar of i detects j, the relationship between the
state variables and radar measurement is: dx = ρ cos(θi +
θR), dy = ρ sin(θi + θR).

2) GPS measurement: The GPS provides the latitude Lat
and longitude Lon of the vehicles. The distance between the
GPS coordinates of the two vehicles is calculated as

dGPS = RE ·
√

∆2
Lon + ∆2

Lat (3)

where

∆Lon = RE(Loni − Lonj) · cos

(
Lati + Latj

2

)
∆Lat = RE(Lati − Latj)

and RE is the earth’s mean radius (i.e. 6371 · 103 [m]).
Since the GPS modules are installed in the center of the

cars, the distance calculated according to (3) also includes
part of the chassis of both vehicles. To calculate the dis-
tance between the two chassis, a distance correction term is

required. The proposed method is a function of the vehicle
dimensions, l and w, the distances dx and dy and the heading
angles θi and θj .

The two cars can be represented in the vehicle i RF (see
Figure 5b). Since the vehicle length l and width w are
constant, and they are known a priori, the correction term
is a function f of angles γ1 and γ2. The overall correction
term ∆GPS can be obtained as:

∆GPS = f(γ1) + f(γ2)

where

γ1 = arctan

(
dy
dx

)
, γ2 = γ1 + 180− (θi − θj)

Figure 4 shows function f for l = 4.47 [m] and w =
1.82 [m]. Finally, the distance components are obtained as
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Fig. 4: GPS distance correction term: the correction term in
function of γ1. The red cross represent the maximum value.

dx = (dGPS −∆GPS) cos (θi − θj)
dy = (dGPS −∆GPS) sin (θi − θj)

3) Experimental Results: The sensor fusion is performed
through an EKF framework, where the information provided
by the sensors are compared with the nonlinear kinematic
model (2).

(a) Global RF (b) Vehicle i RF

Fig. 5: Cars displacement with the radar measurements (a)
in the Global RF and (b) in the vehicle i RF.



Figure 6 shows an experimental test performed with two
identical cars. The test protocol is the following:

• The two cars are sitting still, side by side;
• Vehicle i reaches the constant speed of 7 [m/s] on a

straight path;
• Vehicle j follows vehicle i and then performs an over-

taking maneuver;
• Vehicle j reaches the constant speed of 7 [m/s].

Vehicle j

Vehicle i

Vehicle j

Vehicle i

Fig. 6: Experimental results: path logged by the GPS during
an overtaking maneuver

Figure 7 shows in the top plot the vehicles speed, while
the bottom plot shows the estimated distance by the proposed
approach and the raw distance measured by the GPS.

Vehicle j

Vehicle i

Fig. 7: Experimental results: measured speed and estimated
distance

Note the following remarks from the results:
• The estimated distance has the same profile as the

measured one.
• The difference between the two signals is due to the

correction term. In fact, the proposed approach takes
into consideration the dimensions of the chassis. This

improvement can be useful to increase the safety and
prevent accidents.

IV. EXPERIMENTAL DEMONSTRATION WITH
LONGITUDINAL MOTION CONTROLLER

In this section we demonstrate the proposed perception
system with a closed loop longitudinal motion controller. We
will consider an intersection with large areas of occlusion to
demonstrate the advantage of our shared perception system
when the presence of obstacles is uncertain, as illustrated in
fig. 8. The host vehicle, of which the longitudinal motion
is controlled, communicates with the peer vehicle. The non-
communicating vehicle (red) is entering the intersection and
cutting in while occluded to the ego vehicle but seen by the
peer vehicle.

Sensor and communication setups for the host and the peer
vehicles are the same as explained in Sec. III-A. Moreover, to
execute the shared perception algorithms and the longitudinal
motion control in real-time, the host vehicle is also equipped
with a Matrix embedded PC-Adlink (MXC-6101D/M4G
with Intel Core i7-620LE 2.0 GHz processor) with Robot
Operating System (ROS) and dSpace MicroAutoBox (IBM
PowerPC 750FX processor, 800 MHz).

Fig. 8: Illustration of the Experimental Setup

A. Longitudinal Motion Controller Design

As shown in Fig. 1, our CAV executes the longitudinal
motion control by exploiting real-time perception informa-
tion from the DSRC, as well as the on-board sensors such
as radar and camera. Our longitudinal motion controller,
which commands the reference wheel torque, is based on the
model predictive control based adaptive cruise control design
proposed in [17]. The only difference is that the distance to
the front vehicle is obtained by taking the minimum distance
of the targets that are in the Persistent table and entering the
host vehicle’s path. To determine whether a target will enter
the host vehicle’s path, we check if the following conditions
are met.

[xhost, xhost +HVx,host] ∩ [xtarget, xtarget +HVx,target], (4a)
[yhost, yhost +HVy,host] ∩ [ytarget, ytarget +HVy,target] (4b)

where H is the planning horizon time.



B. Results and Discussion

Fig. 9 shows the trajectories of the ego vehicle in terms of
the relative distance to the vehicle on the host vehicle’s path,
velocity, and reference torque input. Note that our experiment
was conducted at a low speed (less than 5 [m/s]). In this
scenario, our share perception system can feed the relative
distance to the front vehicle about 3.5 seconds earlier than
when the sensor fusion of the on-board sensors (camera and
radar). This allows the longitudinal motion controller to react
to the possible vehicle cut-in early enough to maintain a
safe distance. It is also noted that our shared perception mo-
mentarily loses a target at time instant 5 causing aggressive
torque input. Designing more robust objection association
(isNeighbor()) rather than a simple distance-based method
in our shared perception algorithms to avoid this kind of
situation remains to be our future work.

Fig. 9: Plots of relative distance, velocity, and reference
torque.

Video demonstration for various applications of the pro-
posed shared perception system as well as our experiment
can be found at [18].

V. CONCLUSION

In this paper, we propose a framework to achieve a shared
perception system for CAVs, and present algorithms for
better localization of communicating peers. We show the
effectiveness of our shared perception system by demon-
strating a longitudinal motion controller which exploits the
sensor fusion data from the shared perception system. Our
future research will expand this work in two directions.
First, more sophisticated methods for target association and
measurement updates in our algorithms can be utilized to
improve the quality of the shared perception. The experi-
mental validation of the proposed peer vehicle localization
in Section. III with dGPS measurements remains as a future
work. Second, we plan to apply the shared perception for
more complex maneuvers of autonomous vehicles such as
lane changing, intersection crossing, platooning, etc.
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