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We present a predictive cruise controller which iteratively improves the fuel economy of a vehicle traveling along the same route
every day. Our approach uses historical data from previous trip iterations to improve vehicle performance while guaranteeing a desired
arrival time. The proposed predictive cruise controller is based on the recently developed Learning Model Predictive Control (LMPC)
framework, which is extended in this paper to include time constraints. Moreover, we reformulate the modified LMPC with time
constraint into a computationally tractable form. Our method is presented in detail, applied to the predictive cruise control problem,
and validated through simulations.

1 INTRODUCTION

The U.S. Department of Transportation estimates that nearly 120
million Americans commute each day with an average commute
time of 26 minutes[1]. In addition, 90 % of Americans drive to
work with privately owned vehicles [2]. These daily commutes
often follow the same route.

Advanced driving assistant systems (ADAS) aim to assist
drivers in performing common driving tasks and maneuvers
safely [3], [4]. With recent advancements in perception tech-
nologies and computational power, ADAS can play an impor-
tant role to improve the energy efficiency of a vehicle, as well as
its safety [5], [6]. Predictive cruise control (PCC) is an example
of this potential [7], [8]. PCC is a longitudinal velocity control
driving assistance system that uses look-ahead information about
the downstream road. This information includes static informa-
tion such as speed limits or road grade, and dynamic information
such as traffic speed or intersection delays.

Often PCC is cast as an optimization problem. In [9], [10], op-
timization methods to calculate the optimal velocity trajectory
for maximizing energy efficiency are presented. In [11], [12],
an optimal control problem is formulated to minimize braking
when the vehicle is going through a series of traffic lights. How-
ever, their approaches are limiting in the following senses. First,
they require a priori knowledge about the environment. Second,
the complexity of their approaches increases with the length of
trip. Third, they cannot ensure global safety and time constraint
guarantees unless the horizon of the optimal control problem is
long enough.

In this work we tackle the problem of PCC using the Learning
Model Predictive Control (LMPC) framework presented in [13].
This reference-free controller is an attractive approach because
it is able to solve long horizon optimal control problems while
ensuring global safety constraint guarantees. It has been suc-
cessfully implemented in autonomous driving applications [14],
[15]. However, the original work of LMPC does not address the
problem of completing the task within a given time limit as it is
usually formulated for minimum time problems, where this issue
does not arise. As a result, depending on how the cost of the op-
timal control problem is designed, the task may result in taking
more time to actually finish a task.

In order to apply the LMPC framework to PCC of a vehi-
cle which repeatedly drives along the same route, we modify

the original LMPC so that we can enforce the task to be com-
pleted within a time limit. Moreover, in every trip, our controller
can learn the static environment features such as road grade and
attempts to improve its performance, which includes total fuel
consumption and comfort. The contributions of this paper can
be summarized as follows:

• We present the new design for LMPC with time constraint
which accommodates a constraint on the total duration of
the task.

• We reformulate LMPC with time constraint into a compu-
tationally tractable formation so that it can be implemented
in real time.

• We design a predictive cruise control using the proposed
LMPC with time constraint and show its effectiveness with
simulation results.

The remainder of this paper is organized as follows. Section
2 introduces the vehicle dynamics model and a fuel estima-
tion model, and defines the optimization problem for the pre-
dictive cruise control. Section 3 formulates the learning model
predictive controller with time constraint. Section 4 provides a
tractable reformulation of LMPC with time constraint for real
time implementation. Section 5 demonstrates the effectiveness
of our controller design as a predictive cruise controller for a
repetitive trip in the Berkeley area. Section 6 concludes the work
with some remarks.

2 PROBLEM FORMULATION

We aim to build the predictive cruise control of a vehicle per-
forming repetitive trips along a fixed route, subject to a position-
dependent road grade and a total completion time constraint. We
refer to each successful trip of the route as an iteration. Each
iteration has the same boundary conditions (initial and final po-
sition, speed, and force), and has to be completed within the de-
sired time limit Nf ; x0 = xs and xNf

= xf . At each iteration,
the controller finds a velocity trajectory that maintains or im-
proves the specified vehicle performance objective (such as fuel
economy or comfort).



2.1 Vehicle Dynamics and Fuel Estimation

The simplified vehicle longitudinal dynamics are modeled as a
connection of the first order systems with parameters identified
from experiments. The states of our model include the distance
travelled along the route s, the velocity v, and the force at the
wheel F . The inputs to the model are Ft and Fb, which rep-
resent the wheel-level desired traction and braking forces, re-
spectively; uk = [Ft,k Fb,k]

T . Denoting the state at time k as
xk = [sk vk Fk]

T , the system dynamics are

xk+1 =

 sk + tsvk
vk + ts

m (Fk + FR,k)(
1− ts

τ

)
Fk + ts

τ (Ft,k + Fb,k)

 (1)

where ts is the sampling time; m and τ are the mass and the
time constant of force actuation, respectively; FR is the resis-
tance force which includes aerodynamic drag, rolling resistance,
and gravitational force. This force can be represented as

FR,k = mgcrcos(θ) +mgsin(θ) +
1

2
ρACdv

2
k (2)

where θ is the road pitch angle; g and cr are the gravity and
rolling coefficients, respectively; ρ, A, and Cd are the air den-
sity, frontal area, and drag coefficient, respectively. Moreover,
the road angle is approximated using a quadratic function of the
distance

θ̂t(sk) = a0,k + a1,ksk + a2,ks
2
k , (3)

where (a0,k, a1,k, a2,k) are parameters that are computed as fol-
lows. During each iteration of the trip, we store velocity and
force values at each position along the route; we then intro-
duce θ̄ to estimate the angle by inverting the dynamics (1). At
each time step k of the j-th iteration, given sjk the parame-
ters (aj0,k, a

j
1,k, a

j
2,k) are estimated on-line solving the following

least mean squares problem,

arg min
(aj0,k,a

j
1,k,a

j
2,k)

∑
(p,l)∈G(sjk)

∥∥∥∥∥∥∥
[
1 slp (slp)

2
]a

j
0,k

aj1,k
aj2,k

− θ̄lp
∥∥∥∥∥∥∥ (4)

where G(sjk) is the set of indices and the iteration numbers with
the following property

G(sjk) =
{

(p, l) : sjk ≤ s
l
p ≤ s

j
k + df

}
. (5)

where df is look-ahead distance which is considered a tuning
parameter. A similar method is adopted for system identification
of road curvature in [14].

In the remainder of this paper, the approximated vehicle dy-
namics model (1)-(4) is compactly rewritten as

xk+1 = f(xk, uk). (6)

Also, we consider state and input constraints in the form

xk ∈ X := {(s, v,F ) : 0 ≤ v ≤ vmax,

Fmin ≤ F ≤ Fmax}, (7a)

uk ∈ U := {(Ft, Fb) : 0 ≤ Ft ≤ Fmax, Fmin ≤ Fb ≤ 0}. (7b)

We are interested in designing a predictive cruise controller
which tries to improve its performance as it repeats the same
route. The performance objective can be fuel consumption, jerk,
or travel time. In this paper we seek a better fuel economy by
improving both so-called tank-to-wheels and wheels-to-miles ef-
ficiency [16]. Higher tank-to-wheels and wheels-to-miles effi-
ciency involve improving peak management of engine, shaping

velocity, and reducing the aerodynamic and rolling losses. In or-
der to approximate the fuel consumption, we adopted a polyno-
mial fuel approximation method from [17] which can be written
the following form,

ffuel(v,Ft) = fcruise(v) + faccel(v,Ft) , (8)

where

fcruise(v) = (b0v+ b1v
2 + b2v

3) ,

faccel(v,Ft) = Ft(c0 + c1v+ c2v
2) ,

and (b0, b1, b2, c0, c1, c2) are parameters identified by least mean
squares fitting of the experimental fuel rate data. The goal of our
controller is to minimize this estimate of the fuel consumption,
h(x,u) = ffuel(v,Ft).

2.2 Predictive Cruise Control Problem

For each iteration of trip, we can formulate the predictive cruise
control problem as the following constrained finite horizon opti-
mal control problem.

min
uj
0,...,u

j
Nf−1

Nf−1∑
k=0

h(xjk, u
j
k) (9a)

subject to

xj0 = xs, xjNf
= xf (9b)

xjk+1 = f(xjk, u
j
k), ∀k ∈ [0, ...,Nf − 1], (9c)

xjk ∈ X, ujk ∈ U, ∀k ∈ [0, ...,Nf − 1], (9d)

where j is the iteration number; (9b) and (9c) represent the
boundary conditions and the vehicle dynamics, respectively;
(9d) represents the state and input constraints; The stage cost,
h(·) in (9a), represents the estimated fuel consumption.

3 LEARNING MODEL PREDICTIVE CONTROL
WITH TIME CONSTRAINT

In this section, a formulation of LMPC with time constraint is
proposed. Solving a finite time constrained optimal control prob-
lem such as (9) in real time can be difficult, especially when Nf
is large. Therefore, we design LMPC which tries to solve the
problem (9) and can be implemented in real time. In previous
works, LMPC was introduced for repetitive and iterative tasks
[13]. LMPC leverages past data to progressively improve perfor-
mance while ensuring recursive feasibility, asymptotic stability,
and non-increasing cost at every iteration. In this work, we ex-
tend the LMPC framework with a constraint on the time required
to complete the task. In other words, we guarantee that each it-
eration or repetition does not exceed a total time limit.

Remark 1. In the original work of LMPC in [13], the optimal
control problem is defined on infinite horizon. In our problem,
we focus on the finite time formulation (9).

3.1 Time Sampled Safety Set

We denote the input sequence applied to the dynamics (1) and
the corresponding closed loop state trajectory at j-th iteration as

uj = [uj0, u
j
1, ..., u

j
Nf−1], (10a)

xj = [xj0, x
j
1, ..., x

j
Nf

] (10b)



where ujt and xjt are the input and the state at time t of the j-th
iteration, respectively.

The main contribution of LMPC with time constraint is the
modification of the safety set in [13] to the Time Sampled Safety
Set. We define the time sampled safety set SSjtime at j-th iteration
as

SSjtime(t) = ∪ji=1 ∪
Nf

k=t x
i
k (11)

whereNf is the time limit for each iteration. The difference from
the original definition of the safety set is that it only includes
the states visited during the remaining time, Nf − t. Note that
SSjtime(Nf ) is only xf since each trip must finish within the time
constraint Nf .

3.2 Preliminaries

In this section, we introduce some terminology used for the
LMPC problem with time constraint.

At time t of the j-th iteration, we define the cost-to-go asso-
ciated with the input sequence (10a) and the corresponding state
trajectory (10b) as

Jjt→Nf
(xt, t) =

Nf∑
k=t

h(xjk, u
j
k) (12)

where h(·) is the stage cost function such as the fuel estimation
function (8). We have the following assumption about the stage
cost h(x,u).

Assumption 1. h(·, ·) is a continuous function which has the
following property:

h(xf , u) = 0 and h(x,u) ≥ 0 ∀x ∈ Rnx , u ∈ Rnu .

where nx and nu are the dimensions of x and u, respectively.

For any x ∈ SSjtime(t), we can define the minimum cost-to-go
function Qj(x, t) as

Qj(x, t) =

{
min

(i,l)∈Fj(x,t)
J il→Nf

(x, l) if x ∈ SSjtime(t)

+∞ else

(13)

where F j(x, t) is defined as

F j(x, t) = {(i, l) :i ∈ [0, j], l ≥ t, x = xil

such that xil ∈ SS
i
time(l)}.

Note that the definition of the function Q(·, ·) is modified from
the original definition in [13] because we use the new time sam-
pled safety set SSitime(·).

3.3 LMPC with Time Constraint Formulation

At time t of iteration j ≥ 1, our LMPC with time constraint
solves the following optimization problem:

min
u0|t,...,uN−1|t

N−1∑
k=0

h(xjk|t, u
j
k|t) +Qj−1(xN |t, t) (15a)

subject to

xj0|t = xjt , (15b)

xjk+1|t = f(xjk|t, u
j
k|t), ∀k ∈ [0, ...,N − 1], (15c)

xjk|t ∈ X, ujk|t ∈ U, ∀k ∈ [0, ...,N − 1], (15d)

1A(k)xjk|t = 1A(k)xf , ∀k ∈ [0, ...,N − 1], (15e)

xjN |t ∈ SS
j−1
time (t+N), (15f)

where 1A(·) is the indicator function of the set A defined as
A = {t ∈ R : t ≥ Nf}. Constraints (15b) and (15c) represent
the initial condition and vehicle dynamics, respectively; (15d)
represents the state and input constraints; (15e) is the constraint
which forces the system to stay at xf at t ≥ Nf ; (15f) is the
terminal constraint which imposes the system to be driven into
the safe set sampled from last iteration.Q0(·, ·) and SS0

time(·) are
defined by the initial successful trip.

The resulting optimal states and inputs of (15) are denoted as

x∗,i
t = [x∗,i0|t, x

∗,i
1|t, ..., x

∗,i
N |t], (16a)

u∗,i
t = [u∗,i0|t, u

∗,i
1|t, ..., u

∗,i
N−1|t]. (16b)

Then, the first input u∗,i0|t is applied to the system during the time
interval [t, t+ 1);

uit = u∗,i0|t. (17)

At the next time step t+ 1, a new optimal control problem in the
form of (15), based on new measurements of the state, is solved
over a shifted horizon, yielding a moving or receding horizon
control strategy with control law.

It is noted that with the assumptions 1, LMPC with time con-
straint (15)-(17) is recursively feasible and the cost of each iter-
ation monotonically decreases. The proof is similar to the origi-
nal work of LMPC in [13]. The key difference between the two
LMPC frameworks is that the time sampled safety set shrinks in
the course of time whereas in [13], the safety set is time inde-
pendent; however, this doesn’t affect the proof because the time
sampled safety set always includes at least one point which guar-
antees the existence of the feasible input and the cost decrease
at the next time step; therefore, iteration cost decreases as the
iteration progresses.

Remark 2. LMPC with time constraint (15)-(17) can be refor-
mulated as a robust control and take into account of dynamic
environment with minor modifications [18].

4 LMPC RELAXATION FOR PREDICTIVE CRUISE
CONTROL

In this section we apply the LMPC with time constraint (15)-(17)
to a predictive cruise controller subject to repetitions of the same
commute with a total time limit. Because solving the optimiza-
tion problem (15) in real time is computationally challenging



[14], we use an approximation method for (15): we introduce ap-
proximation functions for the time sampled safety set, SS time(·),
and the terminal set, Q(·).

Because we restrict the vehicle velocity to be positive semi-
definite, the distance travelled s always monotonically increases
with time t. Therefore, we use s to shrink the time sampled set at
each time. At time t of j-th iteration, we approximate SS time(·)
with

ˆSS time(t) =
{

(s, v,F ) :s ≥ sj−1
t ,

[
v
F

]
= Λ

[
1
s
s2

]} (18)

where Λ ∈ R2×3 is the solution of the following least mean
square optimization problem

arg min
Λ

∑
k∈T (sjt)

∥∥∥∥∥∥
[
vj−1
k

F j−1
k

]
−Λ

 1

sj−1
k

(sj−1
k )2

∥∥∥∥∥∥ (19)

where T (sjt ) defines the time steps in which the distance trav-
elled during the previous j − 1-th iteration of trip is between the
current distance and a far enough distance forward, df :

T (sjt ) =
{
k : sjt ≤ s

j−1
k ≤ sjt + df

}
. (20)

It’s noted that d̂f is a tuning parameter decided by the control
designer.

In order to approximate the cost-to-go function Q(·, ·), we in-
troduce the third-order polynomial function C(·)

C(s) =
[
1 s s2 s3

]
∆ (21)

where ∆ ∈ R4 is the solution of the following least mean square
optimization problem

arg min
∆

∑
k∈T (sjt)

∥∥∥Jj−1
k→Nf

−
[
1 sjk (sjk)2 (sjk)3

]
∆
∥∥∥ (22)

where Jj−1
k→Nf

is the cost-to-go function defined in (12).

Finally, we approximate Q(·, ·) with

Q̂j(x, t) =

{
C(s) if x ∈ ˆSSjtime(t)

+∞ else

(23)

where x = [s v F ]
T .

4.1 LMPC with Time Constraint Relaxation

With the approximation functions (18)-(23), we can reformulate
LMPC with time constraint (15)-(17) as the following optimal

control problem:

min
u0|t,...,uN−1|t

N−1∑
k=0

h(xjk|t, u
j
k|t) + Q̂j−1(xN |t, t) (24a)

subject to

xj0|t = xjt , (24b)

xjk+1|t = f(xjk|t, u
j
k|t), ∀k ∈ [0, ...,N − 1], (24c)

xjk|t ∈ X, ujk|t ∈ U, ∀k ∈ [0, ...,N − 1], (24d)

1A(k)xjk|t = 1A(k)xf , ∀k ∈ [0, ...,N − 1], (24e)

xjN |t ∈ ˆSSj−1
time (t+N), (24f)

The resulting optimal states and inputs of (24) are denoted as

x̂∗,i
t = [x∗,i0|t, x

∗,i
1|t, ..., x

∗,i
N |t], (25a)

û∗,i
t = [u∗,i0|t, u

∗,i
1|t, ..., u

∗,i
N−1|t]. (25b)

Then, the first input u∗,i0|t is applied to the system during the time
interval [t, t+ 1);

ûit = u∗,i0|t. (26)

At the next time step t+ 1, a new optimal control problem (24)
with new measurements of the state, is solved over a shifted hori-
zon.

5 SIMULATION RESULTS

In this section we validate the proposed LMPC controller (24)-
(26) with simulation results. A vehicle is repeating the same trip
from ss = 0m to sf = 5000m in the Berkeley hills area, depicted
in Figure 1. This route is subject to position-dependent slope as
shown in the top plot in Figure 2. Each trip is initialized with
xs = [ss,0,0] and ends with xf = [sf ,0,0]. We initialize the
trip with a simple velocity tracking controller with a constant
velocity reference.

Route

Start

End

Figure 1: Fixed route from an origin A and a destination B in the
Berkeley hill area

Figure 2 depicts the closed loop trajectories for the first iter-
ation of the trip and the 8-th iteration of the same trip. In every



iteration of the trip, the arrival times does not exceed the termi-
nal time. Also, as the iteration progresses, the velocity becomes
higher in downhill sections and lower in uphill sections. This
trend helps decrease the total fuel consumption of the trip as it
uses the downhill regions to speed up and the uphill regions to
slow down, leading to reduced acceleration. This behavior is also
seen in force trajectories. Over the course of iterations, only in
uphills, our controller maintains positive wheel force whereas
in downhills, it tends to apply less braking (except near the end
of trip where the vehicle must come to a full stop); therefore, it
wastes less amount of energy.
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Figure 2: Plots of slope (top), closed loop velocity trajectories
(middle), and closed loop wheel force trajectories (bottom)

Figure 3 depicts the normalized total cost (fuel consumption)
for each iteration of the complete trips when the first trip is com-
pleted with a constant velocity tracking controller. As seen, the
total cost generally decreases as the iteration number increases.
There is about 4.5% reduction in fuel consumption only after
8-th trip compared to the 1st trip. It is also noted that the learn-
ing rate decreases with the iterations, as the total cost converges.
This result is analogous to those in other applications of LMPC
[14], [15].

6 CONCLUSION

In this paper we proposed a predictive cruise controller which
improves fuel efficiency by learning from the historical trips.
The key aspect is the modification of learning model predictive
cruise control to guarantee completion of the task within a total
time constraint, while still improving the control performance.
We validated our controller with simulation results. Future work
includes the experimental validation of our developed predictive
cruise controller and its modification to account for disturbances
from the front vehicle. Finally, we can apply the learning model

2 4 6 8

Iteration number

95

96

97

98

99

100

N
o
rm

al
iz

ed
 f

u
el

 c
o
n
su

m
p
ti

o
n
 [

%
]

Figure 3: Plot of fuel consumption per iteration

predictive control with time constraint to other real world prob-
lems.
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